Evaluation of the range shifter model for proton pencil‐beam scanning for the Eclipse v.11 treatment planning system

نویسندگان

  • Witold Matysiak
  • Daniel Yeung
  • Roelf Slopsema
  • Zuofeng Li
چکیده

Existing proton therapy pencil-beam scanning (PBS) systems have limitations on the minimum range to which a patient can be treated. This limitation arises from practical considerations, such as beam current intensity, layer spacing, and delivery time. The range shifter (RS) - a slab of stopping material inserted between the nozzle and the patient - is used to reduce the residual range of the incident beam so that the treatment ranges can be extended to shallow depths. Accurate modeling of the RS allows one to calculate the beam spot size entering the patient, given the proton energy, for arbitrary positions and thicknesses of the RS in the beam path. The Eclipse version 11 (v11) treatment planning system (TPS) models RS-induced beam widening by incorporating the scattering properties of the RS material into the V-parameter. Monte Carlo simulations with Geant4 code and analytical calculations using the Fermi-Eyges (FE) theory with Highland approximation of multiple Coulomb scattering (MCS) were employed to calculate proton beam widening due to scattering in the RS. We demonstrated that both methods achieved consistent results and could be used as a benchmark for evaluating the Eclipse V-parameter model. In most cases, the V-parameter model correctly predicted the beam spot size after traversing the RS. However, Eclipse did not enforce the constraint for a nonnegative covariance matrix when fitting the spot sizes to derive the phase space parameters, which resulted in incorrect calculations under specific conditions. In addition, Eclipse v11 incorrectly imposed limits on the individual values of the phase space parameters, which could lead to incorrect spot size values in the air calculated for beams with spot sigmas <3.8 mm. Notably, the TPS supplier (Varian) and hardware vendor (Ion Beam Applications) inconsistently refer to the RS position, which may result in improper spot size calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of two pencil beam scanning treatment planning systems for proton therapy

OBJECTIVE Analytical dose calculation algorithms for Eclipse and Raystation treatment planning systems (TPS), as well as a Raystation Monte Carlo model are compared to corresponding measured point doses. METHOD The TPS were modeled with the same beam data acquired during commissioning. Thirty-five typical plans were made with each planning system, 31 without range shifter and four with a 5 cm...

متن کامل

Dosimetric evaluation of a treatment planning system using pencil beam convolution algorithm for enhanced dynamic wedges with symmetric and asymmetric fields

Background: The dosimetric performance of Eclipse 6.5 three dimensional treatment planning system (3DTPS) is evaluated by comparing the calculated and measured dose in two dimensions following the guide lines of American Association for Physicists in Medicine Task Group 53. Materials and Methods: The calculations were performed by the 3DTPS for symmetric as well as asymmetric fields for standar...

متن کامل

Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy

This study quantifies the dosimetric accuracy of a commercial treatment planning system as functions of treatment depth, air gap, and range shifter thickness for superficial pencil beam scanning proton therapy treatments. The RayStation 6 pencil beam and Monte Carlo dose engines were each used to calculate the dose distributions for a single treatment plan with varying range shifter air gaps. C...

متن کامل

A new model for Spread Out Bragg Peak in proton therapy of uveal melanoma

In this research, in order to improve our calculations in treatment planning for proton radiotherapy of ocular melanoma, we improved our human eye phantom planning system in GEANT4 toolkit. Different analytical models have investigated the creating of Spread Out Bragg Peak (SOBP) in the tumor area. Bortfeld’s model is one of the most important analytical methods. Using convolution method, a new...

متن کامل

A comparison of the dose distributions from three proton treatment planning systems in the planning of meningioma patients with single‐field uniform dose pencil beam scanning

With the number of new proton centers increasing rapidly, there is a need for an assessment of the available proton treatment planning systems (TPSs). This study compares the dose distributions of complex meningioma plans produced by three proton TPSs: Eclipse, Pinnacle3, and XiO. All three systems were commissioned with the same beam data and, as best as possible, matched configuration setting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016